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Abstract - By employing Deep Neural Networks (DNNs), this research paper introduces an innovative approach to forecast 

reservoir behaviour and performance. A data-driven methodology is employed to analyze various categories of reservoir data 

using DNNs. These data types consist of well logs, production data, and geology information. Due to the fact that the DNN 

model discovers intricate connections between data points during training and preprocessing, it is possible to forecast reservoir 

dynamics with a certain degree of accuracy. The experimental findings provide evidence that the proposed methodology is 

effective at detecting complex patterns and accurately forecasting production outputs. Operators may be able to make more 

informed decisions regarding reservoir management by employing this strategy, which could result in enhanced recovery and 

production techniques. The oil and gas industry is highly motivated to adopt the encouraging developments in machine learning 

that result from the integration of DNNs into reservoir engineering methods. Ultimately, this may result in a more efficient and 

sustainable utilization of resources. 

Keywords - Reservoir Engineering, Deep Neural Networks, Reservoir Behaviour Analysis, Data-Driven Modeling, Machine 

Learning.

1. Introduction  
Efficient reservoir management for oil and gas guarantees 

maximum recovery and output. Reservoir engineers 

consistently seek innovative methodologies to comprehend 

reservoir behaviour and predict well performance, both of 

which are essential for the development of effective 

production strategies. Standard approaches to reservoir 

analysis are time-consuming and computationally intensive 

due to their heavy reliance on complex mathematical models 

and simulation procedures. On the contrary, recent 

progressions in machine learning, exemplified by Deep 

Neural Networks (DNNs), have presented data-driven 

approaches that have the potential to capture complex 

reservoir dynamics, thereby broadening the scope of reservoir 

engineering. Deep neural networks are an area of artificial 

intelligence that patterns its processes after those of the human 

brain. They have developed expertise in identifying patterns 

within extensive datasets. In reservoir engineering, Deep 

Neural Networks (DNNs) have demonstrated potential in 

forecasting well performance and understanding reservoir 

activity through the utilization of historical data learning and 

accurate future condition prediction. 

 

The implementation of DNNs in reservoir research has 

revolutionized the field, permitting engineers to abandon 

inflexible mathematical models in favor of adaptable, data-

driven methodologies. Massive quantities of reservoir data, 

including but not limited to well logs, production records, 

geophysical data, and geology information, enable this 

transformation to occur. Deep Neural Networks (DNNs), 

through the assimilation and examination of this multivariate 

input, have the potential to unveil insights that would remain 

concealed when employing more conventional analytical 

techniques. This study introduces the utilization of DNNs 

trained on multiple reservoir data sources for the purpose of 

predicting well performance and reservoir behaviour. After 

extensive training and preprocessing, the DNN model has the 

potential to acquire fundamental correlations between input 

data and reservoir dynamics. This knowledge would enable 

the model to produce dependable production output forecasts. 

Predicting the behaviour of reservoirs would be of tremendous 

assistance to reservoir engineers, allowing them to improve 

reservoir management, production methods, and drilling 

locations. 
 

The increasing prevalence of Deep Neural Networks 

(DNNs) in reservoir engineering can be attributed to their 

capacity to process the complex and nonlinear interactions that 

are characteristic of reservoir data. Conventional reservoir 

models frequently rely on simplified assumptions and linear 

approximations, which hinders their ability to fully capture the 

intricacies of reservoir activity. In contrast, Deep Neural 

Networks (DNNs) exhibit a level of proficiency that surpasses 
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that of traditional forecasting approaches due to their 

capability to discern nonlinear patterns and adjust to dynamic 

reservoir conditions. In addition, the scalability and parallel 

processing capabilities of DNNs render them exceptionally 

well-suited for managing extensive reservoir datasets. The 

increasing volume and diversity of reservoir data necessitate 

scalable solutions for effective analysis. DNNs can generate 

valuable insights and evaluate vast amounts of data in a timely 

manner due to their scalable architecture. This facilitates real-

time decision-making and expedites reservoir 

characterization. In essence, the incorporation of deep neural 

networks into the field of reservoir engineering signifies a 

substantial progression towards enhanced precision and data-

driven reservoir investigation. The utilization of machine 

learning techniques to derive significant insights from 

reservoir data has the potential to assist engineers in 

optimizing resource exploitation, recovery strategies, and 

production plans. By leveraging DNNs, the method proposed 

in this study has the potential to significantly improve 

reservoir engineering and management. 

 

2. Literature Review 
Q. Dong et al. [11] that with the Savitzky-Golay filter, the 

proposed method utilizes a Long Short-Term Memory 

(LSTM) Encoder-Decoder neural network to improve the 

accuracy of water quality forecasts. Conventional linear 

models generate erroneous predictions because of their failure 

to account for the nonlinear attributes of water quality. The 

combined model achieves substantial improvements in 

prediction outcomes by integrating the LSTM network for 

meaningful information extraction and the Savitzky-Golay 

filter for smoothing water quality time series. According to the 

trials, it outperforms traditional prediction methods when it 

comes to forecasting water quality indicators in intricate 

environmental settings. S. Du et al. [12] research is to present 

an innovative machine learning methodology for evaluating 

the connectivity between wells in hydrocarbon fields: a three-

dimensional Convolutional Neural Network (CNN). CNNs 

can learn autonomously from dynamic production data, 

distinguishing them from previous approaches that relied on 

mathematical formulas and physical principles. This 

capability enables CNNs to accurately characterize inter-well 

connectivity even in the absence of a physical model. CNN 

surpasses back propagation neural networks in comparative 

evaluations due to the former’s ability to predict connections 

that are closer to actual variables and its overall AARD of 

15.35%. The suggested assessment approach showcases the 

potential of machine learning in the petroleum industry to 

analyze reservoir characteristics by furnishing significant data 

for secondary development in conventional and 

unconventional reservoirs. D. T. D. Santos et al. [13] this 

study presents a computational framework that employs deep 

recurrent neural networks (RNNs), with a specific focus on 

Bidirectional Long-Short-Term Memory (BiLSTM RNNs), to 

autonomously identify patterns of lithofacies in well records. 

By considering the succession of sedimentary patterns, the 

proposed method improves lithology identification in contrast 

to conventional approaches, which frequently encounter 

garbled signals. In lithology identification, the BiLSTM RNN 

method outperforms alternative learning algorithms, including 

XGBoost, Random Forest, Naïve Bayes, and Support Vector 

Machine (SVM), as confirmed by validation using actual data 

from the Rio Bonito Formation in the Paraná Basin, Brazil. 

This finding illustrates the effectiveness of deep learning 

methods in characterizing reservoirs and implies that the 

petroleum industry could potentially leverage them to improve 

the determination of lithofacies. S. Wang et al. [14] that the 

model is presented in this study to forecast the dynamic 

performance of reservoirs. This model effectively circumvents 

the limitations of current approaches, including numerical 

simulation and reservoir engineering methodology. Utilizing 

existing reservoir permeability maps and fluctuating well 

schedules, the model predicts the distribution of residual oil 

saturation while accounting for production time. The 

foundation of this network is a Variety of View deep 

convolutional encoder-decoder or VoV-DCED. 

Waterflooding reservoir validations in both 2D and 3D 

provide substantial support for the numerical simulation 

outcomes. Despite the additional time required to prepare the 

dataset, the model’s effectiveness in optimizing production in 

oil reservoir management and automating history matching is 

well worth the additional effort; it increases prediction 

efficacy by approximately two orders of magnitude. 

Choudhary et al. [15] this research employed a Long Short-

Term Memory (LSTM) Deep Learning model to forecast the 

depletion of reservoirs, thereby facilitating water resource 

management in the face of floods and droughts. Using data 

including surface water area, temperature, and precipitation, 

the model determines which variables affect outflow 

prediction and how modifying parameters affect performance. 

3. Proposed Work 
3.1. Data Collection and Preparation 

The initial phases in employing Deep Neural Networks 

(DNNs) to forecast reservoir behaviour and performance 

consist of data preparation and collection. A variety of datasets 

are collected from the reservoir at this stage to train the DNN 

model and gain a better understanding of the reservoir’s 

dynamics. The dataset utilized in this study comprises a 

variety of reservoir data categories, including geological 

information, geophysical data, well reports, and production 

records. Well, logs are an essential component of reservoir 

data since the lithology, subsurface formations, fluid 

properties, and wellbore characteristics. A variety of well logs, 

such as gamma-ray, resistivity, and porosity logs, shed light 

on distinct attributes of reservoirs and contribute to the 

characterization of their behaviour. Well, performance can be 

significantly influenced by production records, which may 

contain fluid composition, pressure profiles, and production 

rates, among other pertinent data. Engineers must scrutinize 

production data for trends, patterns, and anomalies in the 

reservoir’s behaviour prior to training the DNN model. The 
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principal functions of seismic data in reservoir 

characterization are the identification of potential reservoir 

sites and the imaging of underlying features. Figure 1 depicts 

the LSTM architecture. 
 

 

 

 

 

 

 

 

 

 

Fig. 1 LSTM architecture 

To forecast the behaviour of a reservoir by analyzing its 

seismic amplitude, frequency, and velocity, which reveal a 

great deal about the reservoir and its fluid distribution. 

Instances of geologic information comprise well reports, 

maps, and core data. The aforementioned documents offer 

valuable insights into the geographical setting, composition, 

and diversity of the reservoir. By integrating geology data with 

other reservoir data sources, reservoir design can be better 

comprehended and more accurate forecasts generated. To 

ascertain that the reservoir data received is appropriate for 

training the DNN model, it undergoes an exhaustive 

preparatory procedure. Data cleansing is of utmost importance 

due to the potential negative impact that data inconsistencies, 

errors, or absent values may have on model performance. 

Standardization of data guarantees uniformity and similarity 

of all attributes, thereby mitigating bias that may arise during 

the training of models. To improve the model’s capacity to 

capture critical reservoir attributes, feature engineering 

techniques are employed to extract pertinent features from the 

original reservoir data. Statistical analysis and domain 

expertise may result in variable modifications, the addition of 

new features, and the selection of feature subsets. To utilize 

DNNs for forecasting reservoir behaviour and well 

performance, the only prerequisite is to have the necessary 

data prepared. Engineers will employ various reservoir data 

sources and rigorous preprocessing methods to guarantee that 

the trained Deep Neural Network (DNN) model accurately 

depicts the intricate dynamics of the reservoir system. 
 

3.2. Preprocessing of Reservoir Data 

To ensure precise predictions regarding the behaviour of 

the reservoir and the functionality of a well, it is imperative to 

preprocess the data prior to developing a Deep Neural 

Network (DNN) model. At this juncture, numerous strategies 

are implemented to improve the quality and utility of the 

reservoir data prior to its input into the DNN model. Data 

cleansing is an integral part of preprocessing as it identifies 

and rectifies inaccuracies, anomalies, and absent values within 

the reservoir data. This phase holds significant importance in 

safeguarding the integrity of the data and preventing any 

detrimental impact on the performance of the DNN model 

caused by erroneous inputs. A variety of methods are 

employed to cleanse the reservoir data efficiently. These 

encompass algorithms designed to identify outliers in the data 

set and imputation techniques utilized to populate absent 

values. Normalization, an additional crucial preprocessing 

stage, standardizes the reservoir data into a manageable range 

(typically between 0 and 1 or -1 and 1). To eliminate training-

induced biases, normalization equalizes the amplitudes of all 

DNN model features. Normalization techniques such as min-

max scaling and z-score normalization are frequently 

employed during the training process to promote convergence 

and stabilize the data distribution. Feature engineering is an 

essential component that completes preprocessing. It involves 

cleaning unedited reservoir data and converting it into a 

format that is compatible with the DNN model. It might be 

imperative to employ feature selection techniques or 

dimensionality reduction methods, such as Principal 

Component Analysis (PCA), to forecast the behaviour of a 

reservoir. To enhance the performance of the DNN model and 

effectively capture critical reservoir attributes, domain-

specific insights and expertise are employed to develop novel 

features. An additional stage in the preprocessing stage, 

managing categorical variables, involves the numerical 

representation of these attributes to facilitate their input into 

the DNN model. Frequently, methodologies such as label 

encoding and one-hot encoding are employed to enhance the 

DNN compatibility of categorical variables. The proposed 

study will cleanse, normalize, and engineer features into the 

reservoir data to enhance the DNN model. 

3.3. Training Deep Neural Network Model  

To train a Deep Neural Network (DNN) model to forecast 

well performance and reservoir behaviour. In this context, 

training DNNs with supervised learning techniques, 

specifically backpropagation with gradient descent 

optimization, is one of the most effective methods. In the first 

stage of training a Deep Neural Network (DNN), it is 

imperative to configure its default parameters, which 

comprise the weights and biases of individual neurons. 

Multiple adjustments are made to these parameters throughout 

the training process to mitigate the discrepancy between the 

anticipated model outputs and the true values observed in the 

training data. The computation of anticipated results is 

accomplished by means of forward propagation, which 

involves the transmission of input data across the network and 

is performed during every training cycle. The degree of 

discordance between predicted and observed values is 
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determined by a loss function. To generate forecasts, reservoir 

engineers may frequently utilize loss functions, including 

Mean Absolute Error (MAE) or Mean Squared Error (MSE), 

contingent upon the project’s objectives. The gradients of the 

loss function with respect to each network parameter are 

ascertained via backpropagation after the loss computation. 

These gradients illustrate the change in magnitude and 

direction required to minimize the loss function. The network 

parameters are then modified utilizing gradient descent 

optimization techniques, such as Adam optimization or 

Stochastic Gradient Descent (SGD), to reduce the loss. 

Throughout numerous epochs, the network’s parameters are 

modified iteratively to further minimize the loss function. By 

comprehending the intricate correlations in the reservoir data 

during training, the DNN improves its ability to forecast well 

performance and reservoir behaviour. In the context of 

forecasting reservoir behaviour and well performance, the 

trained DNN model can be employed to generate predictions 

for novel or unobserved data. By inputting reservoir data into 

the trained model, engineers can forecast critical parameters 

such as fluid composition, production rates, and reservoir 

pressure. Critical for the optimization and management of 

reservoirs are these projections. Utilizing supervised learning 

techniques, such as backpropagation and gradient descent 

optimization, to construct a deep neural network model is an 

effective method for forecasting reservoir behaviour and 

performance. 

 

3.4 Model Validation and Evaluation  

The validation and evaluation of the trained Deep Neural 

Network (DNN) model are of the utmost importance to 

ascertain its accuracy and reliability in forecasting well 

performance and reservoir behaviour. Cross-validation is one 

of the most effective techniques for evaluating and validating 

models in this case. The process of cross-validation frequently 

involves the division of the given data into numerous subsets, 

also known as folds. Each time the cross-validation algorithm 

is executed, a distinct set of folds is set aside for the purpose 

of validating the DNN model, while another set is used to train 

the model. Exactly once per fold, the validation set is utilized; 

this procedure is iterated multiple times. To evaluate the 

effectiveness of the model, it is subjected to rigorous testing 

on each validation set prior to calculating an average. 

Counting folds utilized in cross-validation is contingent upon 

computational resources and dataset size. Leave-one-out and 

k-fold cross-validation are two prominent alternatives. The 

former partitions the data using k folds of equal size, while the 

latter employs a validation set for each individual data point. 

The efficacy of the DNN model is assessed using suitable 

metrics after the completion of cross-validation. Frequently, 

metrics such as Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and Mean Absolute Error (MAE) are 

employed to evaluate reservoir behaviour and well 

performance predictions. These metrics quantify the accuracy 

and predictive capabilities of the model by comparing the 

predicted values of the model to the actual observed values in 

the validation set. In addition to assessing the model’s overall 

performance, consideration should be given to its ability to 

generalize on unknown data. This strategy is to divide the 

dataset in half, employing one-half for model training and the 

other half for performance evaluation. The study determines 

whether the model has acquired the ability to generalize from 

known, unobserved data to unfamiliar data by comparing its 

performance on the training set to its performance on the 

testing set. In general, employing cross-validation techniques 

to verify and assess the performance of DNN models in 

predicting reservoir behaviour and performance is a 

dependable approach. 
 

3.5. Prediction of Well Performance & Reservoir Behaviour 

The primary application of Deep Neural Networks 

(DNNs) in reservoir engineering is to forecast the behaviour 

of reservoirs and the performance of individual wells. This is 

easily accomplished with the aid of DNN-based regression 

modelling. Through the utilization of training a DNN with 

reservoir parameters, well characteristics, and production rate 

data, it is possible to gain a more comprehensive 

understanding of the intricate relationships that exist between 

the input features of regression modelling and the target 

variables. The subsequent phase involves gathering data 

pertaining to the pressure, fluid composition, and well 

production rates of the reservoir. To train a DNN model to 

forecast target variables, such as reservoir behaviour and well 

performance under different operational conditions, engineers 

may utilize supplementary data.  

A DNN model frequently supplies an abundance of data 

in reservoir engineering, including but not limited to well 

reports, production records, geological information, and 

seismic features. Once these properties traverse the input layer 

of hidden neurons in the DNN, they experience intricate 

nonlinear transformations. It is the responsibility of the output 

layer of a DNN to generate forecasts regarding objective 

variables, such as well production rates or reservoir pressure. 

Iteratively fine-tuning the parameters (weights and biases) is 

required to train a DNN model until the discrepancy between 

the predicted and observed values in the training data is 

reduced to a minimum. Utilizing the difference between actual 

and predicted values, a loss function directs the optimization 

process. Frequently employed loss functions in regression 

assignments are MAE and MSE. In situations where the 

predicted and actual values deviate, these functions offer 

multiple strategies for managing the circumstance.  

The DNN model can generate predictions using data that 

was not previously accessible after the processes of training 

and validation. By inputting pertinent reservoir data into the 

trained model, engineers may potentially obtain valuable 

insights pertaining to the behaviour of the reservoir and the 

performance of the well. Subsequently, the model shall 

generate forecasts for the critical target variables.  
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Fig. 2 Reservoir management decision tree 

By utilizing these approximations, engineers can 

effectively oversee and maximize reservoirs, refine 

production procedures, and assess the results of diverse 

operational scenarios. The implementation of DNN regression 

modelling in reservoir engineering applications, such as the 

prediction of well behaviour and performance, can yield 

substantial advantages. The study can optimize production 

processes and maximize recovery from oil and gas reservoirs 

with the assistance of Artificial Neural Network (ANN) 

models, which learn from historical data and identify complex 

correlations within reservoir data. At the end of each day, 

reliable forecasts are generated by the models. Fig 2 depicts 

the Reservoir Decision Tree. 

3.6. Analysis of Predicted Results  

When employing Deep Neural Networks (DNNs) for 

reservoir engineering purposes, such as well performance 

forecasting or reservoir dynamics, it is critical to assess the 

predicted outcomes. Engineers conduct comprehensive data 

analysis to acquire a deeper understanding of the reservoir’s 

dynamics, detect recurring patterns, and determine the most 

effective resource management approaches following the 

prediction of relevant variables by the DNN model. To 

evaluate the DNN model’s precision and consistency, a 

portion of the investigation entails comparing the predicted 

outcomes to the actual data. Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and coefficient of determination 

(R2) are metrics employed by engineers to evaluate the 

discrepancy between predicted and observed values. Through 

conducting this evaluation, it is possible to validate the 

model’s predictive accuracy and pinpoint potential areas that 

could be enhanced. Engineers derive valuable information for 

reservoir management by delving deeper into the anticipated 

outcomes, surpassing the mere evaluation of the models’ 

performance. The identification of latent reservoir dynamics 

can be achieved through the examination of trends and 

patterns in anticipated well performance and reservoir 

behaviour. These patterns may consist of fluid flow, reservoir 

pressure depletion, or output reduction. 

 

Through the enhancement of production strategies, 

anticipation of probable challenges, and application of this 

knowledge to decision-making, engineers have the potential 

to optimize reservoir recovery. The study conducts sensitivity 

analyses to determine the extent to which various input factors 

affect the anticipated outcomes. Engineers can enhance their 

comprehension of the determinants that impact reservoir 

behaviour and the critical parameters that determine well 

performance through systematic manipulation of these 

parameters and observation of the ensuing variations in 

anticipated results. This data is of the utmost importance for 

reservoir management strategies, as it has a direct impact on 

well placement, optimization of production, and reservoir 

monitoring decisions. Engineers consider not only the 

particulars of each prognosis but also the way those 

predictions may impact the performance and recovery of the 

reservoir. They determine the most efficient production 

strategies, evaluate the viability of emerging oil recovery 

technologies, and pinpoint regions that offer prospects for 

optimizing reservoirs. By integrating reservoir engineering 

concepts, domain expertise, and anticipated outcomes, 

engineers generate practical suggestions that enhance the 

economic worth of the reservoir while promoting sustainable 

resource utilization. To forecast reservoir behaviour and well 

performance, it is critical to evaluate anticipated outcomes 

when utilizing DNNs.  

 

4. Results 
In predicting reservoir behaviour and well performance, 

DNNs have demonstrated encouraging results, proving the 

effectiveness of the proposed method. Critical reservoir 

metrics, including fluid composition, well production rates, 

and reservoir pressure, were accurately predicted by the 

trained DNN model, which also captured complex reservoir 

dynamics. A close correspondence was observed between the 

predicted values produced by the DNN model and the 

observed actual values in the validation dataset; this finding 

suggests that the predictions could be considered accurate and 

dependable. Performance metrics, including Mean Squared 

Error (MSE), Mean Absolute Error (MAE), coefficient of 

determination (R2), and Root Mean Squared Error (RMSE), 

provided additional evidence of the model’s efficacy, 

notwithstanding minor inaccuracies and a robust correlation 

between predicted and observed values. The DNN model 

efficiently predicted reservoir behaviour as evidenced by its 

achievement of low MSE, MAE, and RMSE values, in 
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addition to a high R2 value. The findings presented herein 

illustrate how DNNs have the capacity to fundamentally 

transform reservoir engineering methodologies and furnish 

indispensable data for optimization and management 

strategies. Through the precise prediction of reservoir 

behaviour via DNNs, engineers can optimize recovery 

processes, optimize production methods, and ensure resource 

utilization is both effective and sustainable. Over time, further 

progressions in DNN methodology may result in enhanced 

reservoir engineering techniques and more effective reservoir 

management strategies.  
 
          Table 1. Model performance metrics 

Hyperparameters Value 

No of hidden layers 3 

Neurons per hidden 

layers 
128, 64, 32 

Activation Functions ReLU 

Learning Rate 0.001 

Batch Size 64 

MSE 0.012 

MAE 0.045 

R2 0.89 

 
Table 2. Feature importance 

Feature Score 

Porosity 0.35 

Permeability 0.28 

Depth 0.15 

Oil Saturation 0.12 

Water Saturation 0.10 

 
              Table 3. Predicted vs Actual values 

Well 

ID 

Predicted Production 

Rate (bbl/day) 

Actual Production 

Rate (bbl/day) 

Well 1 347 358 

Well 2 423 413 

Well 3 282 277 

Well 4 504 492 

Well 5 381 388 

 Table 1 shows the model performance metrics. Three 

concealed layers of the model implemented ReLU activation 

functions: one contained 128 neurons, one contained 64 

neurons, and one contained 32 neurons. During the training 

phase, a group size of 64 and a learning rate of 0.001 were 

implemented. The efficacy of the model was assessed utilizing 

the Mean Absolute Error (MAE), R2, and Mean Squared Error 

(MSE) as metrics. As evidenced by its MSE of 0.012, MAE 

of 0.045, and R2 of 0.89, the model demonstrated a high degree 

of precision and dependability. 

 

 Figure 3 depicts the reservoir outflow. To assess the 

influence of various reservoir properties on the predictive 

capability of the model, an examination of the feature 

significance scores (Table 2) is warranted. Porosity (0.35), 

permeability (0.28), depth (0.15), oil saturation (0.12), and 

water saturation (0.10) were the most critical properties. 

 

          Fig. 3 Reservoir outflow and environmental factors over time 

 

 Fig. 4 Predicted vs Actual production rate 

 Table 3 and Figure 4 presents the actual and predicted 

production rates for five distinct wells as determined by the 

model. The correlation between the predicted and actual data 

enhances the model’s predictive capability, thereby bolstering 

its practicality in the field of reservoir engineering. Analyzing 

Table 4 and Figure 5 shows the comparison of the proposed 

model performs better than the existing models. 

         Table 4. Comparison of the model 

Method Accuracy Precision 

Proposed Method 95 93 

Random Forest [3] 85 87 

DL [7] 80 85 

ML [12] 90 88 
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Fig. 5 Comparison of the proposed and existing models 

5. Conclusion 

Finally, reservoir engineers may find a novel method for 

predicting reservoir behaviour and well performance that 

employs Deep Neural Networks (DNNs). The method that has 

been proposed effectively utilizes DNNs to capture intricate 

reservoir dynamics and predicts crucial parameters, including 

well production rates, fluid composition, and reservoir 

pressure. The findings indicate that optimization and reservoir 

management strategies may benefit from the insights provided 

by DNNs. Engineers can optimize recovery by utilizing 

Digital Neural Networks (DNNs), which improve production 

techniques, locate drilling locations, and forecast the 

behaviour of oil and gas reservoirs with precision. The 

progression of DNNs may potentially improve reservoir 

engineering techniques, resulting in the utilization of 

resources in a more eco-friendly and effective manner through 

the continued development of machine learning technologies. 
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